Solution of a covering problem related to labelled tournaments

نویسنده

  • Jirí Sgall
چکیده

Suppose we have a tournament with edges labelled so that the edges incident with any vertex have at most k distinct labels (and no vertex has outdegree 0). Let m be the minimal size of a subset of labels such that for any vertex there exists an outgoing edge labelled by one of the labels in the subset. It was known that m ? k+1 2 for any tournament. We show that this bound is almost best possible, by a probabilistic construction of tournaments with m = (k 2 = log k). We give explicit tournaments with m = k 2?o(1). If the number of vertices is bounded by N < 2 k , we have a better upper bound of m = O(k log N), which is again almost optimal. We also consider a relaxation of this problem in which instead of the size of a subset of labels we minimize the total weight of a fractional set with analogous properties. In that case the optimal bound is 2k ? 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General form of a cooperative gradual maximal covering location problem

Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location–allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering ...

متن کامل

A Reliable Multi-objective p-hub Covering Location Problem Considering of Hubs Capabilities

In the facility location problem usually reducing total transferring cost and time are common objectives. Designing of a network with hub facilities can improve network efficiency. In this study a new model is presented for P-hub covering location problem. In the p-hub covering problem it is attempted to locate hubs and allocate customers to established hubs while allocated nodes to hubs are in...

متن کامل

Heuristic and exact algorithms for Generalized Bin Covering Problem

In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.

متن کامل

Efficient Solution Procedure to Develop Maximal Covering Location Problem Under Uncertainty (Using GA and Simulation)

  In this paper, we present the stochastic version of Maximal Covering Location Problem which optimizes both location and allocation decisions, concurrently. It’s assumed that traveling time between customers and distribution centers (DCs) is uncertain and described by normal distribution function and if this time is less than coverage time, the customer can be allocated to DC. In classical mod...

متن کامل

A modified NSGA-II solution for a new multi-objective hub maximal covering problem under uncertain shipments

Hubs are centers for collection, rearrangement, and redistribution of commodities in transportation networks. In this paper, non-linear multi-objective formulations for single and multiple allocation hub maximal covering problems as well as the linearized versions are proposed. The formulations substantially mitigate complexity of the existing models due to the fewer number of constraints and v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 23  شماره 

صفحات  -

تاریخ انتشار 1996